Machine Learning for Spatial Environmental Data
Theory, Applications and Software
9780849382376
Distributed for EPFL Press
Machine Learning for Spatial Environmental Data
Theory, Applications and Software
392 pages | 6 1/4 x 9 1/2
Table of Contents
Learning From Geospatial Data: Problems and Important Concepts of Machine Learning – Machine Learning Algorithms for Geospatial Data – Contents of the Book. Software Description – Short Review of the Literature / Exploratory Spatial Data Analysis: Presentation of Data and Case Studies: Exploratory Spatial Data Analysis – Data Pre-Processing – Spatial Correlations: Variography – Presentation of Data – k-Nearest Neighbours Algorithm: a Benchmark Model for Regression and Classification / Geostatistics: Spatial Predictions – Geostatistical Conditional Simulations – Spatial Classification – Software / Machine Learning Algorithms: Artificial Neural Networks: Introduction – Radial Basis Function Neural Networks – General Regression Neural Networks – Probabilistic Neural Networks – Self-Organising Maps – Gaussian Mixture Models And Mixture Density Network / Support Vector Machines And Kernel Methods: Introduction to Statistical Learning Theory – Support Vector Classification – Spatial Data Classification with SVM – Support Vector Regression – Spatial Data Mapping with SVR – Advanced Topics in Kernel Methods.
Be the first to know
Get the latest updates on new releases, special offers, and media highlights when you subscribe to our email lists!